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Structure tuning of lithium amide for asymmetric 1,4-addition to
cinnamate and subsequent demasking
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Abstract—Systematic structure tuning of lithium amides derived from benzyl-N-TMS-, allyl-N-TBDMS-, and diisopropylamines
lead to several candidates including anthracen-9-ylmethanamine which provided high performance in the enantioselective 1,4-addi-
tion (91% ee) and following hydrogenolysis with 10% Pd/C-H2 in methanol to afford b-amino ester.
� 2004 Elsevier Ltd. All rights reserved.
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Scheme 1. Asymmetric addition to 5 and following demasking of 6

to 7.
We have been engaged in the chiral diether 11-controlled
asymmetric conjugate addition reaction of N-trialkylsil-
yl lithium amides derived from 22,3 and 34 with enoates,
affording b-aminoalkanoates5 with high enantioselectiv-
ity (Fig. 1).6 The total scheme constitutes two processes;
the first is asymmetric conjugate addition and the
second is the demasking of N-silyl and N-organic groups
from the adducts, for example, 6 to primary amines 7
(R1 = R2 = H) (Scheme 1). A trialkylsilyl group was
readily removed from 6 during purification by silica
gel column chromatography or by HF treatment. How-
ever, the benzyl-type group of 6 (R1 = CH2Ph) some-
times suffered from the cleavage of undesired C–N
bond by hydrogenolysis to result in the formation of
3-phenylpropanoate, although an allyl-type group
(R1 = allyl) was removed by rhodium-catalyzed isomeri-
zation. As part of our continuing effort to broaden the
scope of the asymmetric conjugate addition of lithium
amide, we are interested in the possibility of developing
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Figure 1. Chiral ligand 1 and amides 2–4.
other amines, thereby providing an alternative for benz-
yl- and allylamines.

In order to extract amine candidates for asymmetric
conjugate addition and hydrogenolytic or isomerization
demasking, we set up the structure 8 that contains struc-
tural features of 2–4.7 New amine structures 9 and 10
contain the two and three aromatic units of A–C of 8,
which might increase bulkiness for asymmetric induc-
tion and hydrogenolysis activity for selective cleavage.
Dibenzylamine 11 corresponds to the open version of
10, which was proven to be less satisfactory.2 The struc-
ture 12 is positioned between 2 and 3. The structures 13
and 14 contain both features, A and D, of 2 and 4, and
are expected to be much more easily cleaved by hydro-
genolysis than the simple benzyl group.8 PMP-amine
15 is the aromatic version of 4 and it is possible to be
cleaved by oxidation.9 These N-TMS amines with reaso-
nably high purity were prepared from the corresponding
amine10 by the standard silylation procedure in high
yields2,4 (see Fig. 2).

mailto:tomioka@pharm.kyoto-u.ac.jp 


N
H

SiR3

N
H

R

N
H

R
N
H

R

N
H

R
N
H

R

N
H

N
H

R

D

B CA

D

B

A

B CAA

A

D

A

D

A C

8 119a R = TMS
9b R = H

10a R = TMS
10b R = H

12a R = TMS
12b R = H

13a R = TMS
13b R = H

14a R = TMS
14b R = H

15a R = TMS
15b R = H

MeO

Figure 2. Structures 9–15 extracted systematically from the structure 8.

Table 2. Hydrogenolysis of 6 (R2 = H) in MeOH at rt giving 7a

Run 6 R1 (R2 = H) Pd H2

(atm)

Time

(h)

Yield

(%)
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The asymmetric conjugate addition reaction of these
lithium amides with tert-butyl cinnamate 5 was con-
ducted using 3equiv of an amine and 3.6equiv of 1 in
toluene (Scheme 1).11 The reaction of 9a and 10a pro-
ceeded smoothly at �78 �C within a reasonable time.
Purification by silica gel column chromatography gave
the corresponding desilylated adducts 6 with 87% ee
and 91% ee in reasonably high yields (Table 1, runs 1
and 2). The ee of 6 was determined by a chiral stationary
phase HPLC (Daicel Chiralcel OD-H, hexane/isopropa-
nol = 100/1, 1.0mL/min, 254nm). The absolute configu-
ration was determined by converting to the known
primary amine 7.12 Isobutenylamine 12a gave 6 with
50% ee in 73% yield, being less satisfactory than the cor-
responding allylamine 3 (run 3). Contrary to our expec-
tation TMS-amines 13a, 14a and 15a did not give the
products 6 even under the enforced higher temperature
conditions, probably due to too much bulkiness and
poor nucleophilicity (runs 4–6).

Other than TMS-amines, amines themselves were also
examined with respect to their reactivities. Benzylamine
2b underwent the reaction at �78 �C to afford 6 (R1,
R2 = Bn, H) in 64% yield, although ee was as low as
16% (run 7). Unfortunately, lithium amide prepared
from 9b was insoluble in toluene. Interestingly, 10b gave
ent-6 (R1, R2 = anthracen-9-ylmethyl, H) with 27% ee in
Table 1. The chiral diether 1-controlled asymmetric conjugate addi-

tion of amines to cinnamate 5 giving 6a

Run Amine Temp (�C) Time (h) Yield (%) ee (%)c

1 9a �78 0.2 94 87

2 10a �78 1.5 90 91

3 12a �78 1.5 73 50

4 13a �78 to rt 6 0 nd

5 14a �78 to rt 5 0 nd

6 15a �78 to rt 3 0 nd

7 2bb �78 0.5 64 16

8 10b �78 2 72 ent-27

9 13b �78 1 73 57

10 14b �78 to reflux 3 0 nd

11 15b �78 to 20 3 36 14

a Amines (3equiv) and 1 (3.6equiv) were used.
b Benzylamine was used instead of TMS-amine.
c nd: Not determined.
72% yield (run 8). Diphenylmethylamine 13b recovered
its reactivity by removing an electron-withdrawing and
bulky TMS group to afford 6 (R1, R2 = Ph2CH, H) with
57% ee in 73% yield (run 9). Triphenylmethylamine 14b
did not give the conjugate adduct 6, recovering 5 in 65%
yield, together with the corresponding cinnamamide as
an isolable by-product in 34% yield (run 10). PMP-
amine 15b was found to give 6 (R1, R2 = PMP, H) with
14% ee in 36% yield, together with the corresponding
cinnamamide in 38% yield and its conjugate adduct in
17% yield (run 11). These results indicated that a bal-
ance of steric and electronic features is the key to high
reactivity and enantioselectivity.

Handling of 10a is easier than 2 because 10a is needles of
mp 69.5–70.5 �C. The product amine 6 (R1 = 9-anthra-
CH2, R

2 = H) is also needles of mp 109–111 �C, which
is enantioenriched by recrystallization from methanol
to give the amine of mp 114–115 �C with >99% ee in
70% recovery yield. These are practical merits of 10a
in the use of asymmetric amination.

Since the reasonably high enantioselectivity in the reac-
tion with 1-naphthylmethyl- and anthracen-9-ylmethyl-
amines 9a and 10a was obtained, the demasking of the
products 6 was examined. Hydrogenolysis of 6
(R1 = Bn, 1-naphCH2, 9-anthraCH2, Ph2CH, R2 = H)
was conducted in methanol at room temperature to find
out efficiency and selectivity in C–N cleavage (Table 2).
A benzyl group in 6 (R1 = Bn, R2 = H) was a good
masking one to be selectively cleaved giving 7 in high
yields under the conditions of Pd(OH)2–7atm of hydro-
gen2 as well as 10% Pd/C–ordinary hydrogen atmos-
phere (runs 1 and 2). 1-Naphthylmethyl group was
easily cleaved to give 7 in 92% yield (run 3). Anthr-
acen-9-ylmethyl group of 6 with 90% ee was also cleaved
readily to give 7 with 90% optical purity in reasonable
yields (runs 4 and 5). However, by-product 16 was
obtained in less than 5% yield (Scheme 2). It is noteworthy
1 PhCH2 20% Pd(OH)2 7 24 94

2 PhCH2 10% Pd/C 1 40 92

3 1-naphCH2 20% Pd(OH)2 7 24 92

4 9-anthraCH2 20% Pd(OH)2 7 24 69

5 9-anthraCH2 10% Pd/C 1 24 81

6 Ph2CH 10% Pd/C 1 41 84

a The 0.1–0.2equiv (20–30% w/w) of palladium catalyst was used.
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that the hydrogenolysis was possible with 10% Pd/C
under hydrogen balloon conditions for 24 h shorter than
the hydrogenation time, 40h, required for the benzyl
group-come off (runs 2 and 5). Expectedly, a diphenyl-
methyl group was cleaved easily to give 7 in a good yield
(run 6). These hydrogenolysis reactions indicated that
10% Pd/C–ordinary atmosphere of hydrogen in metha-
nol is the conditions of choice. It is also important to
note that no racemization was observed in these hydro-
genolysis reactions of 6, indicating potential utility of
these N-masking groups in the synthetic manipulation
of 6.

In conclusion, systematic survey of lithium amide struc-
tures lead to anthracen-9-ylmethylamine potentially
applicable in asymmetric conjugate addition to cinna-
mate and following hydrogenolytic demasking to b-amino
ester. Since b-amino esters are constituents of organic
compounds with promising function,13 the journey in
this line will be continued in our laboratories.14,15
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